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SNR Estimation in a Non-Coherent BFSK Receiver With
a Carrier Frequency Offset

Syed Ali Hassan and Mary Ann Ingram

Abstract—This correspondence deals with the problem of estimating av-
erage signal-to-noise ratio (SNR) for a communication link employing bi-
nary frequency shift keying (BFSK) in the presence of a carrier frequency
offset (CFO). The transmitted symbols are corrupted by Rayleigh fading
and additive white Gaussian noise (AWGN). We treat the CFO as a nuisance
parameter and estimate it using a data statistics based estimator. This es-
timate is then used to design a maximum likelihood (ML) estimator to get
the estimates of SNR. We also derive the Cramér-Rao bound (CRB) for
the estimators and have shown the performance of both the data-aided and
non-data-aided estimators.

Index Terms— BFSK receiver, carrier frequency offset, Rayleigh fading,
SNR estimation.

I. INTRODUCTION

Estimates of signal-to-noise ratio (SNR) are used in many wire-
less receiver functions, including signal detection, power control al-
gorithms, link adaptation, and turbo decoding, etc. Furthermore, if the
radios are energy constrained, e.g., if they are in a sensor network, con-
stant envelope modulation and noncoherent demodulation are desirable
to reduce circuit consumption of energy. Frequency shift keying (FSK)
enables efficient power amplification in the transmitter and a simple
receiver design that employs envelope detection. However, the carrier
frequency offset (CFO) causes error in the estimation of SNR; this will
degrade the performance of systems that depend upon the knowledge
of SNR, e.g., amplify and forward (AF) cooperative algorithms [1].
Thus, in this correspondence, we estimate the SNR of a noncoherent
BFSK receiver in the presence of a carrier offset, treating the CFO as
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a nuisance parameter. The CFO estimation problem is quite tedious to
solve because of its highly nonlinear nature, hence analytical methods
cannot be directly applied to solve the problem at hand. Therefore,
in this correspondence we derive a maximum likelihood estimator for
the SNR that uses a moment-based CFO estimator. We also derive the
Cramér—Rao lower bound (CRB) for the SNR estimator. We provide
two types of SNR estimators: a data-aided (DA) estimator that uses the
pilot symbols and a non-data-aided (NDA) estimator that does blind
estimation on the received symbols.

Several authors have attacked the problem of estimating the SNR for
binary phase shift keying (BPSK) and FSK receivers under perfect syn-
chronization conditions. For example, [2] compares a variety of tech-
niques for SNR estimation in AWGN for M-PSK signals. Many ap-
proaches also include the channel effects such as multipath fading and
address the issue of SNR estimation for fading channels for BPSK, e.g.,
in [3]-[6]. In [7], the authors have estimated the average SNR for non-
coherent binary FSK (NCBFSK) receiver, assuming a Rayleigh fading
channel and unit noise power spectral density. However, in implemen-
tations, noise power must also be estimated. The authors in [8] and [9]
have derived the SNR estimators for the noncoherent MFSK receivers
for Rayleigh as well as block fading channels. However, they assume
perfect carrier synchronization at the receiver. The work in [10] and
[11] have addressed the problem of calculating the bit error probabili-
ties for NCFSK systems in the presence of CFO.

The rest of the correspondence is organized as follows. In the next
section, we describe the system model and the notations used for the
BFSK receiver operating in the presence of CFO. Section III treats the
derivations of the SNR estimators for the data-aided scenario in the
presence of a Rayleigh fading channel. Section IV considers the esti-
mators for non-data-aided case and in Section V, we will discuss the
simulation results for various estimators and overall estimator perfor-
mance in terms of mean-squared error and the CRB. The correspon-
dence then concludes in Section VL.

II. SYSTEM MODEL

Consider a Rayleigh fading communication system employing bi-
nary FSK modulation, where a block of data with k& symbols undergoes
symbol-rate fading. The received signal observed at the receiver end is
given as

r(t) = VE;a(t) exp (527 (fo + Fn + Af)E+6) + n(1),
0<t<T. melL2} ()

where E; is the signal power, T is the symbol time, f. is the carrier
frequency, and f,, is the BFSK frequency corresponding to the mes-
sage signal. The shift in the carrier frequency at the receiver is denoted
as Af and 6 is the unknown carrier phase. Without the loss of gen-
erality we will set # = 0, since we are dealing with the noncoherent
receiver. The noise at the receiver is n(t), which is AWGN and «(#) is
the Rayleigh fading envelope. Thus, the integrator output, matched to
the transmitted signal Sy, is given as
T
v = [OVE exp (=j2n(f+ fr)dt )

0

where we get the signal part, after simplifying the above equation, as

1 —exp(—j2rAfT)

J2r(m — 1)+ j2rAfT | mef{l2t 3

Ums = Pa |:

where P = Ej—T . For the sake of simplicity, we assume that the average
symbol energy is unity, i.e., > = 1, and thus the signal output after the
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square law detector for the BFSK receiver having a frequency carrier
shift of Af is given as

9

N 1 — exp(—j2mp)
“lj2m(m = 1)+ j52mp

m € {1,2} @

Lm,i =

] + Ny i

where p = A fT is the normalized frequency error, |.| is the magnitude
operator, and the CFO factors in both branches are given as

1 - exp(=j2mp)
J2w(m — 1)+ j27p

A, = ‘ m € {1,2}. 5)

The received symbols from 2 branches are denoted by .., ;, where the
first index m denotes the branch index and the second index ¢ is the
time index such thati = {1,2,..., k}; k being the packet length. The
channel gains, «;, and the noise elements, n;, are zero mean complex
Gaussian random variables with variance of % and % per real dimen-
sion, respectively. We can express x; = [.L‘Li ;vg,i]T to be the received
signal vector at time ¢. Since we assumed that the average symbol en-
ergy is unity, the expected energy of the ith received symbol is given
as S. Thus, the signal-to-noise ratio is given by v = % Our interest is
to find the estimate of the average SNR using the observed data, after
the square law detector but it can be seen that the factor A,,, in (5) will
reduce the signal power if p # 0. Thus, in this correspondence, we
will try to estimate the CFO, p, and treat it as a nuisance parameter
which is essential to estimate the actual parameter of interest namely,
the signal to noise ratio. Throughout the correspondence, we assume
perfect timing recovery at the receiver.

III. DATA AIDED ESTIMATION

In this section, we derive the SNR estimator for the BFSK receiver
in the presence of CFO, while having full knowledge of the transmitted
data. Therefore, without the loss of generality, we assume that all the
transmitted symbols are identical, and correspond to frequency fi. We
drop the time index ¢ for the ease of notation and use the received data
in one symbol period, because the received symbols are independent
at each time slot. From (4), it can be seen that the signal power is re-
duced by the CFO factor, A1, in the upper branch (21 ) and there is also
a signal spill which introduces some part of signal power in the lower

_ sin?(xp)

branch, given by A2, where these factors are given as Ay = o)
sing(r p)

and A, = CEEDILE Because of the signal leakage in both of the
branches, the two branches no longer remain orthogonal and hence
there exists a correlation between the outputs 1 and x2, given by the
cross-correlation coefficient as

24:455% + SN (A1 + A2) + N?

&= (A4S + N)(A25 + V)

1. (6)

From (4), as o and n are zero-mean complex Gaussian, therefore, the
probability density function (PDF) of both the branches become expo-
nential after passing through the envelope detector. As shown in [7], the
best performance of SNR estimator, in terms of CRB, can be obtained
if the likelihood function for the received data is maximized after the
envelope detector, i.e., the best estimator is obtained if the input data
to the SNR estimator is the vector x. However, there exists a corre-
lation between the elements of x, because of which the joint PDF of
the received signal vector is given by Downton’s bivariate exponential
distribution [12], containing a modified Bessel function. The presence
of modified Bessel function makes the problem at hand very tedious
to solve analytically. However, a reasonable solution can be obtained
if the input data to the estimator is the difference between x; and z2,
which is also available in the BFSK receiver. Thus, we use the Laplace
distribution [13], which is obtained by taking the difference of two ex-
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ponential random variables as y = @1 — x2. In order to further sim-
plify the PDF expression, we define the following: pp = A; + Aa,
v=A; — A>,and ¢ = \/4N? + 4uSN + v252. Thus, the PDF of
y is given as

2 oy
py(y) = ——5————exp (=2), y>0 7
py(y) 07021 =) eXP( 1 ), y > @)
where 202, = A, S+N,m € {1,2},n = ﬁi%,anda = Vfw

It can be seen from (7), that a closed-form solution will be prohibitive
if we try to maximize the log-likelihood function of (7) with respect to
three parameters namely .S, IV, and p. Specifically the CFO parameter
is very difficult to solve analytically through this optimization problem.
A solution can be obtained if we somehow know the CFO factor, p.
In the following subsection, we estimate p using the moments based
method, which turns out to be a very accurate estimate, especially at
high SNR. Then we will show how the estimate of CFO can help in
estimating the SNR using the conventional ML method.

A. Method of Moments Approach

In the method of moments (MM) approach, we use the first order
self and cross statistics of the received data to estimate the CFO, which
will subsequently be used in the estimation of SNR. In this case, the
first order statistics obtained from both the branches are as follows:

E{e,.} =A.S+ N, me{l,2} (8)
and the first cross-moment is given as
E{.lfl.lfg} = 24-114‘1252 + S]\’Y(441 + A.z) + 17\72. (9)

In practice, we replace the ensemble averages in previous equations
with those of time averages, i.e., E{z} = %Zf:l «;. Hence, we
denote the time averages as E{x1} := X, E{xz2} := Y, and
E{xix2} := Z. Wealsolet A, = A;S and Ay = A»S, then (8)
and (9) can be solved simultaneously to get the estimate of the noise
power, NV, as

N = % (X 1Y - V(X?—6XYV +Y + 42)) . (10

and the estimates of ﬁil and Az are given as Al =X — N and fiz =
Y — N. Finally, we get the estimates of p and then the signal power,
as given by following equations:

Ay + (/A Ay
Al — A,

p . 2
f}l — A < .7TpA )
A sin(7p)

It will be shown in the results section that the SNR estimate resulting
from (12) and (10) shows a high mean squared error in the high SNR
region. However, the estimate of p is accurate to a high precision for
SNR > 7dB.

p= (1

Wy
Il

(12)

B. Maximum-Likelihood Approach

In the ML approach, we assume the knowledge of CFO, which we
get from the MM estimator in the previous subsection. Based upon the
known value of p, we can treat ;¢ and v in (7) as constant parameters.
Thus, the log-likelihood of the k symbols, y;, i = {1,2,...,k}, is
given as

I‘»
k 2
A(y; S, Nlp) = —§log ¢ — WS+a) Zyi- (13)
T a=1
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Maximizing the above likelihood with respect to S and N again pro-
hibits a closed-form expression for the estimates of signal power and
noise power. However, it will be shown in the results section that the
estimate of the CFO and hence the noise power from the MM estimator
is fairly accurate. Therefore, we can use the estimate of the noise power
from the MM estimator to derive the ML estimator.

Based on the above discussions, the log-likelihood function can be
further simplified by using SNR ~, i.e., %, and the noise, NV, as the
parameters of interest. Thus, we get

k
~ 2
A(y;7|N) = —klog N — klogo — ——— E yi, (14)
Ny + o) =

where ¢ = \/4 + 417 + 12+2. Finding the maxima of the log-likeli-
hood with respect to  gives the following estimate of SNR:

k 2 Or A
(Shiw) /el) = kN
v Zf;l yi + pkN

y= (s)

C. Cramér-Rao Lower Bound

The CRB, which is the benchmark on the variance of an estimator,
is a function of the Fisher information, F'(v), [14], and is given as
CRB = =, where F(+) is given as

F(y)>
*A
Py = _E{a—}

Thus twice differentiating (14) with respect to v and taking the expec-
tation gives the following Fisher information:

(16)

N — i 272 P 2 2 L
= o {k{ ) (64 pv)? H an

where ¢ = 2u67(0(p6 + 6v) + 2p7 (1o + v) + 1°4*) (2v + (o +
1))

IV. NON-DATA-AIDED ESTIMATION

In this section, we derive the MM and ML estimators for the non-
data-aided scenario where we assume the equally likely probability of
the transmission of the data symbols. We follow the same approach of
finding p and N from the MM estimator and then use these estimates
to find the ML SNR estimator.

A. Method of Moment Estimator

For the NDA case, we assume that P{signal € x|} = P{signal €

a2} = L. Hence, the average value of both branches remains the same.

Thus, we use the following statistics of the data in order to estimate the
CFO:
1.+ - .
E{z.m} = §[A1 + A +2N], me {1,2} (18)

E{ri22} =241 Ay + N(A, + Ay) + N°. (19)

Since we need three linearly independent equations in order to get the
estimates of three parameters, we use the following vector formulation
of the received data:

7 = (E(xh) (E{xD)" (EGe"}) (20)
where E{x} = [E{z1} E{z2}]". Thus, E{x}E{x}" is given as

EGOE()T = A1+ A+ 2V @
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Fig. 1. Behavior of MM1 and MM2 estimators for non-data-aided case.

where 15 is a 2 X 2 matrix of all ones. The autocorrelation matrix of
the received data, given by E{x,,x",}, contains E{z2,} on the main
diagonal given as

E{z2} = (Af +44§)+2N(Al+42)+2N2, €{1.2} 22)

while the off-diagonal elements are given as E{x1 x2 }, which are given
by (19). Thus, taking the inverse of this matrix and multiplying it with
(21) gives us the following Z:

(A1 + Ay + 2N)?

Z= - - - -
4 |:(A1 + A2)2 + 317\7(‘41 + AZ) + 31VZi|

1.. (23)

Since the resulting Z from the above equation contains identical ele-
ments at each location of 2 X 2 matrix, therefore, we can select only one
of the elements from Z. As in the previous case, we let E{x,, } := X,
then any z € Z can be written as

2
SR S - @4)
(2X —2N)2+3N(2X —2N) + 3N?
which gives the estimate of the noise power N as
N=X[1-1/z-13] (25)

Let us denote this estimator (resulting from the statistic z) as MM 1. We
have plotted the results from (24) for the computed statistic, z, against
the SNR, ~, in Fig. 1 for a CFO factor p = 0.1. The curve in the
figure exhibits smooth monotone behavior for low values of SNR, i.e.,
when SNR € [0, 10]. Thus, the estimator performance is anticipated to
be good in this SNR region. However, as the SNR increases, the curve
appears to approach a vertical asymptote. This implies that a very small
change in the computed statistics of data would cause a huge variation
in the estimated value of SNR. Hence, this approach will suffer in the
estimation of high SNR values. Therefore, this approach of MM1 can
be used as an NDA approach for SNR estimation for low SNR values.

In order to design an estimator which performs better at high SNR
values, we consider another statistic of the received data

E{zi23} = NBNX —2X°) =Y (2N - 3X) (26)
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> E{xia2
= E{z122}. Let W := é{l 2

mate of the noise power in terms of statistic W is glven as

then an esti-

where, as before, Y

o1 X - Xy 4 JFT XY
N=oes [w X-X?-Y+/fW, X1 )} 7)
where f = X* — TX2Y + Y2+ W2(Y — 3X2) 4 2W (5X° — XY).

We denote this estimator as MM2. The estimator characteristics are also
plotted in Fig. 1. It can be seen that this estimator would not estimate
accurately in the low SNR regime because of the vertical asymptote.
However, the estimator performance is likely to be good in the high
SNR region since the estimator characteristic exhibits almost linear be-
havior. Hence, we can use MM2 for the NDA estimation of SNR in the
high SNR region.

For the estimate of the CFO, we notice from the definitions of A

and A that, o j_:Q T = (pﬂét:;)z) . If we denote this ratio of

CFO factors as /3, then p can be given as a function of 3 as follows:

_1-2/F-I-47
N 202/8-1)

We can calculate B from (18) and (19), which gives 3 =
Y- w(zxfw) N2

(28)

, where N can be found by either using MM1

2(2X —2N
or MM2. Finally the signal power is given as
»  2X —2N
S=="— (29)
A+ A,

where A, and A, can be computed using the estimate of p from (28).

B. Maximum-Likelihood Approach

Using the difference of random variables, y = x| —x2, as done in the
previous section and assuming equally likely probability of transmitted
symbols, the PDF of the received symbols is given as

py(y) = \/(

+ ! exp (—ia7|y|> (30)
V(63— 63) + 462531 - )

1 1
Ea
P 4462621 - ¢€)

where 262 = 262 = A1 S + N, 265 =267 = A,S + N,

R L R e S
“ 75310 Gh
and
T T RS e
G703(1=¢)
However, o™ = a~ and thus both terms are simply added up to give

the PDF of the received symbols as

1 exp _aly]
26262(1 — 4

which is the same PDF as for the data-aided case in (7), with the only
difference that the absolute of the data will be used now. Hence, we use
the same approach as in the Section III-B. The likelihood and hence the
resulting estimates of the SNR follow from (14) and (15), respectively.
Even there is no change in the CRB, because the likelihood of both the
schemes is the same and also E{y}, y > 0 for the DA case is the same
as E|y| for the NDA case. The Fisher Information and hence the CRB
also remains equal.

pyly) = (33)
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Fig. 2. Estimation of p by MM estimator for & = 1000 in the data-aided
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Fig. 3. NMSE plot for SNR estimation for the data-aided scenario for k& =
1000.

V. SIMULATION RESULTS

In this section, we compare the normalized mean-square
error (NMSE) (normalized with respect to the square of the true
value of the SNR) of the estimators using simulations for both the data-
aided and non-data-aided scenarios for a packet length, & = 1000,
averaged over 20 000 trials. For the data-aided scenario, Fig. 2 shows
the estimates the CFO factor, p, using the MM approach for the DA
case. It can be seen that the estimate of CFO is highly accurate for
SNR > 7 dB. Fig. 3 shows the NMSE for the SNR estimation resulting
from both the MM and the ML estimator. In the “No CFO estimation”
case, the SNR is estimated without estimating the CFO from the
algorithm derived in [8]. We observe that as the SNR increases, the
leakage in the lower branch increases and consequently the error in the
estimation increases. It can also be noticed that the MM estimator works
well for the SNR estimation at low values of SNR. However, it suffers in
the high SNR region due to a higher bias for high values of signal power
in this range. The same cup shaped curve of MM estimator can also be
seen in [15]. From the MM estimator, we know that the estimate of p is
quite accurate and this estimate also depends on the noise estimate from
(10), (11), hence we can use these estimates to derive the ML algorithm
and the resulting curve in Fig. 3 shows that the NMSE is quite small if
we use the estimates from the MM estimator. The CRB is also plotted
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Fig. 4. MSE contour plot for different packet lengths in the MM estimation of
CFO for the data-aided case.
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to compare the results. The high error in the low SNR region of ML
estimator is due to two facts: 1) bad estimates of p in MM, 2) at low
SNR, the condition of y > () is not always satisfied in the PDF from (7).
However, the ML estimator shows good results at high SNR.

The above simulation results were for a packet length of £ = 1000.
However, it is interesting to note the performance of the estimate of p
even at small packet lengths. The contour plot in Fig. 4 shows the MSE
of the estimation of CFO factor for various values of packet lengths.
It can be seen that even if the packet length is small, we can get good
estimates of p, which can be used in the ML estimator to accurately
estimate the SNR.

Fig. 5 shows the estimation of the CFO factor for the non-data-aided
case using both the MM1 and MM2 estimator for a packet length of
1000. It be seen that the MM estimator performs better at low SNR
as compared to the MM2 estimator. However, in the high SNR region,
the MM2 estimator gives a very accurate estimate of p, which is evident
from the discussions in Section IV-A and Fig. 1. However, the NMSE
at high SNR for both the estimators is very large (and is not plotted in
Fig. 6), hence both of them cannot be used for SNR estimation at high
values of SNR. Atlow SNR, the MM estimator gives a fairly better per-
formance as can be seen from Fig. 6. We have plotted the NMSE for the
NDA ML estimator using both the estimates from MM1 and MM2. It
can be seen that using the estimates from MM results in a better perfor-
mance in low SNR region as expected, while the NMSE is higher for the
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Fig. 6. NMSE for SNR estimators for non-data-aided case; & = 1000.

MM2 estimator in the same SNR range. However, an interesting result
arises in the high SNR regime. We observe that the NMSE performance
is little better for MM2-ML estimator, however the performance is al-
most the same for both the NDA-MM1 and NDA-MM?2 estimators, and
the performance reaches to that of the CRB at very high values of SNR.

VI. CONCLUSION

In this correspondence, we have studied the problem of estimating
the SNR in the presence of a CFO. We have derived both the data
aided and non-data-aided estimators for the Rayleigh fading channel
and have derived method of moments estimator and the maximum like-
lihood estimator for each case. Concerning the difficulty of the CFO
estimation problem (in terms of its nonlinearity), we have shown that
the estimates of CFO can be found using the MM estimators, which
can then be used to derive the ML estimators, which give accurate es-
timates of the SNR at various high and low SNR scenarios.
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Stochastic Multiple Stream Decoding of Cortex Codes

Matthieu Arzel, Cyril Lahuec, Christophe Jego,
Warren J. Gross, and Yvain Bruned

Abstract—Being one of the most efficient solutions to implement forward
error correction (FEC) decoders based on belief propagation, stochastic
processing is thus a method worthy of consideration when addressing the
decoding of emerging codes such as Cortex codes. This code family offers
short block codes with large Hamming distances. Unfortunately, their con-
struction introduces many hidden variables making them difficult to be ef-
ficiently decoded with digital circuits implementing the Sum-Product algo-
rithm. With the introduction of multiple stochastic streams, the proposed
solution alleviates the hidden variables problem thus yielding decoding per-
formances close to optimal. Morevover, this new stochastic architecture is
more efficient in terms of complexity-throughput ratio compared to re-
cently published stochastic decoders using either edge or tracking forecast
memories.

Index Terms—Cortex codes, stochastic decoding, sum-product algo-
rithm.

I. INTRODUCTION

Turbo [1] and LDPC [2], [3] codes allow near optimal decoding per-
formance for codes of block lengths larger than a few hundreds of bits.
However, these code families are not adapted to smaller blocks. Also
based on iterative encoding and interleaving stages, Cortex codes [4],
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[5] were invented for this purpose. They are asymptotically good [6]
and possess interesting properties such as a systematic construction of
self-dual codes [4] and the possibility to associate every type-II self
dual code with a Cortex code [7]. Although the Cortex construction of-
fers short codes with large Hamming distances, they are generally dif-
ficult to decode with usual digital implementation techniques [7], [8]
due to the complexity of the decoding graphs and the large number of
hidden variables. The first efficient Cortex decoder was implemented
for codes based on the (4,2,2) Hadamard code with analog circuits
[9] applying the Sum-Product Algorithm (SPA). But is it possible to
achieve such results with digital circuits? The state-of-the-art digital
implementations of the original SPA for LDPC codes consist of dif-
ferent optimized versions of the Min-Sum solution provided in [10],
with the exception of stochastic circuits originally proposed in [11].
Stochastic decoders have been so optimized that they provide some of
the most efficient implementations of LDPC decoders [12].

Principles of stochastic computation were elaborated in the 1960s
[13], [14] as a method to carry out complex operations with a low hard-
ware complexity. The probabilities are converted into streams of sto-
chastic bits using Bernoulli sequences in which the information is given
by the statistics of the bit streams. Complex arithmetic operations on
probabilities such as multiplication and division are transformed into
operations on bits using elementary logic gates. Stochastic decoder ar-
chitectures are designed with low computational complexity and a high
level of parallelism [15], [16] achieving high throughputs [12], [17],
[18]. Moreover, stochastic decoding is of high interest for low-power
decoders [19] and fault-tolerant nanoscale circuits [20].

The main goal of this paper is to show that Cortex codes can be
efficiently decoded, despite the complexity of their decoding graphs,
by state-of-the-art techniques, i.e., stochastic processing. An original
idea is also introduced to reduce the number of clock cycles required
to decode one codeword and to replace the edge memories (EMs) [17]
by simple deterministic shufflers. The paper is organized as follows.
Section II summarizes the principles of Cortex codes. A stochastic de-
coder architecture is presented to deal with them in Section III. This
architecture is then compared with analog SPA and digital Min-Sum
counterparts in terms of decoding performance in Section IV. Section V
concludes the paper.

II. CorTEX CODES

A. Design Principles

Cortex codes were originally designed as systematic codes of rate
one half [4]. As shown in Fig. 1, the systematic symbols are grouped in
frames of & symbols denoted by x;. Any frame x is sliced into p parts
of same length . Each sub-frame, or slice, is independently encoded
using a component encoder Cj] of rate one half. The resulting redundant
symbols are grouped into a frame of length & denoted by v°. Then,
this frame is interleaved over its full-length %. This slicing-encoding-
grouping-interleaving scheme is iterated s times. Finally, the resulting
frame v*® is again sliced and encoded to yield the redundant frame r of
length k. If the same self-dual code is used for any component code,
then, depending on constraints on the interleavers [21], the resulting
Cortex code is also self-dual. Thus, codes with Hamming distances
multiple of two or four are built. Using this Cortex construction, many
known and new extremal short codes can be built, as shown in [7].

B. C4 Codes

Whereas the Cortex codes generally used the extended (8,4,4) Ham-
ming code as component code, other codes can be used. For instance,
in [9] the basic (4,2,2) Hadamard code, the smallest self-dual code, was
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